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A THEORETICAL ANALYSIS OF THE EFFECTS OF FUEL MOTION ON AIRPLANE DYNAMICS’ 
By ALBERT A. SCHP 

SUMMARY 

The general equations of motion for an airplane with a num- 
ber of spherical fuel tanks are derived. The motion of the-fuel is 
approximated by the motion of solid pendulums. The same type 
of derivation and equations are shown to apply to any type of 

-fuel tank where the motion of the fuel may be represented in 
terms of undamped harmonic oscillators. 

Motions are calculated for a present-day high-speed airplane 
and a free-JEying airplane model with two spherical tanks in the 
symmetry plane. These calculations show that the normal air- 
plane motion may be considerably modiIJier1 and that residual 
oscillations may result. The ratio of the natural .fuel fre- 
quency to the natural airplane frequency is shown to be the most 
important parameter for determining the eflect qf the fuel motion 
on the airplane motion, The stabilizing e#ect of turbulence in 
the fuel is discussed, and it is suggested that the stabilizing egect 
of artijicially induced turbulence be investigated experimentally. 

INTRODUCTiON 

The present analysis treats each fuel tank as a pendulum 
oscillating in two degrees of freedom and applies Lagrange’s 
equations of motion to obtain the interaction between these 
pendulums and the airplane. Thus, for small motions the 
fuels are treated as simple harmonic oscillators. The results 
are applied to obtain the general equations of motion of this 
system and, in particular, the lateral motion of an airplane 
with internal fuel tanks in the plane of symmetry of the air- 
plane. Since the general solution of the equations is ex- 
tremely complicated, an attempt is made to cvaluatc the 
results by carrying out nrimcrical calculations for specific 
cases. This approach is shown to be atlequatc in yielding 
the most gcncral effects of fuel motion. 

The discussion of the numerical application of the cqua- 
tions of motion to specific cases is given in detail after the 
derivation of the equations of motion. This discussion of 
results is understandable quite indcpcntlcntly of the deriva- 
tion of the equations of motion. 

Small-amplitude lightly damped lateral oscillations are a 
troublesome characteristic of certain high-spcetl airplanes. 
Several possible explanations for these oscillations, which are 
adequate in specific cases, have been offrretl. For esamplc, 
reference 1 shows that nonlinear ac~rotlynamic~ derivatives 
could cause such oscillations, and it has been shown that 
atmospheric turbulence is another possiblr cause. It lms 
also been suggested that a possible cause of such oscillations 
is the motion of fuel in the tanks. In some recently designed 
airplanes the mass of the fuel relati-vr to the airplanc mass is 
much larger than has been common in the past; therefore, 
the efI’ects of fuel motion can be cxpcctetl to bc rclativcly 
more important. 111 fact, in several casts baffling the fuel 
tanks was found to have considcrablc efl’ect on the general 
handling qualities of the airplane and sometimes actually 
eliminated the troublesome lightly damped lateral oscilla- 
tions which had been present. 

SYMBOLS 

An experimental investigation of the effects of fuel motion 
on the lateral motion of a free-flying airplane model is de- 
scribed in reference 2. The results indicated that the effects 
of fuel motion were noticeable and caused the lateral motion 
of the model to be very erratic. 

s, I’, z 

I,, Al, N 

i, .i, k 

d’, Y, 2 

i 

I1 
u, v, w 

V 

R 

R, 

V 

airplane stabilit)- axes with origin deter- 
minctl 1)~ equations (13) ; also compo- 
ncnl s of applictl forces along thcsc axes 

components of applitd moments about 
,\I-, Y-, and Z-axes, respectively 

unit vectors along S-, I’-, and Z-axes, 
respectively 

components of translational displacement 
of airplane 

vector translational velocity of airplane 
(ii+j$+ki=iU+u) 

magnitude of steady-state velocity 
components of disturbance translational 

velocity of airplane 
vector clisturbance velocity of airplane 

(iu+ jv+ kw) 
vector position of a point in airplane 

(iR,i-jR,S kR,) 
vector position of center of gravity of 

fuel in B particular fuel tank 
total vector velocity of a point in airplane 

‘Supersedes NACA TN 2280, “ A Theoretical Analysis of the Effects of Fuel Motion on Airplane Dynamics” by Albert A. Schy, 1951. 



2 REPORT 1 O&O-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

P 

4, 4 + 

w 

sideslip angle (tan-’ s) 

infinitesimal rotations of airplane about 
X-, Y-, and Z-axes, respectively 

vector rotational velocity of airplane 
(GSj~fW 

r, 11 components of angular displacement from 
vertical of line joining fuel center of 
gravity to tank center, taken on mutu- 
ally perpendicular planes; { positive in 
direction of positive roll and q positive 
in direction of positive pitch 

1 distance from tank center to fuel center 
of gravity 

h vertical displacement of fuel center of 
gravity from equilibrium position 

k number of fuel tanks 
m mass 

2, I,, Iz, Ixz 
total mass of airplane and fuel 
total moments and product of inertia of 

airplane about X-, Y-, and Z-axes 
Ix’, II-‘, rzr, Lz’, rigid-body moments and products of in- 

I I,,’ YZ’, 
Ir, 4 

Ir= II, 
It’, I,’ 

KX 

KZ 

KXZ 

ertia about axes through center of gravity 
fuel moments of inertia about [- and 

v-axes through tank center 

fuel moments of inertia about {- and 
v-axes through fuel center of gravity 

nondimensional radius of gyration in roll 

nondimensional radius of gyration in yaw 

nondimensional product-of-inertia param- 

9 
G=# 

Y 

kinetic energy 
potential energy 
period 
time for exponentially damped or increas- 

ing oscillation to halve or double am- 
plitude, respectively 

time 

nondimensional time parameter 

acceleration due to gravity 

flight-path angle with respect to horizontal 

b 
pb, pb, 

D 

CL 

Cl 

c?z 

CY 

Subscripts: 

f 

a 
0 

air density 
wing area 
wing span 
lateral nondimensional mass coefficient 

mt -2% pb=pSb’ pbr-pSb > 
differentiation operator & 

trim lift coefficient (m/:ii’) 

rolling-moment coefficient 

( 

Rolling moment 
1 
z pU2Sb 

> 
yawing-moment coefficient 

Yawing moment 
1 
z pU2Sb 

> 

lateral-force coefficient ( La~~~~ce) 

particular fuel tank, or summation index 
over fuel tanks (j= 1, 2, . . . k) 

airplane without fuel 
initial conditions at t=O 
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DERIVATION OF EQUATIONS OF MOTION 

ASSUMPTIONS FOR DERIVATION OF GENERAL EQUATIONS OF MOTION 

As a first approximation, only the effect of the motion of 
the fuel as a whole is considered; that is, only the funda- 
mental mode of the wave motion is considered, and this 
mode is approximated by rigid-body motion. ,The main 
effect of the internal wave motion is to introduce damping 
into the fuel oscillation. This damping is caused by the 
conversion of kinetic energy into heat through the turbu- 
lence caused by the splashing of the fuel. A strictly analytic 
consideration of such damping effects is extremely difficult; 
on the other hand, the damping caused by the viscous tan- 
gential forces between the fuel and the tank is completely 
negligible (see reference 3). The analysis of the problem is 
therefore confined to the motion with no fuel damping and 
the effect of the damping is considered in the discussion of 
the results. 

In a spherical tank the fuel can oscillate approximately as 
a rigid body if no splashing is assumed for small oscillations. 
The motion may be pictured as the “rocking” of a spherical 
segment of constant shape. The restraining force of the 
tank, which always acts in a direction normal to the motion, 
is exactly analogous to the tension in a pendulum. Thus, 
the small motions of the fuel in a spherical tank may be rep- 
resented quite well by the well-known simple properties of 
small pendulum motions. This approach is used in the 
mathematical analysis of the problem. 

The effect of aspherical tank shape can be approximated 
by replacing the tank by an equivalent harmonic oscillator 
with an arbitrary amount of turbulence damping added even 
for small motions. For example, the representation of rec- 
t,angular tanks as harmonic oscillators is discussed in refer- 
ence 4. Thus in this case also the most general effects of 
the fuel motion on tbe airplanr mot.ion should be qualita- 
tively obtainable by this type of analysis. 

The effects of large-amplitude fuel motions will bc dis- 
cussed qualitatively after the discussion of t,he results of the 
mathematical analysis. As usual in stability analysis all 
motions are assumed small and second-order terms are 
ignored. 

DERIVATION OF GENERAL EQUATIONS OF MOTION 

With the preceding assumptions the physical problem can 
be considered as the interaction between two or more rigid 
bodies, namely the airplane and the several fuel pendulums, 
with each fuel pendulum considered as suspended from the 
tank center. The only potential energy considered in the 
system is that of the pendulums. If the inertial character- 
istics of the airplane and the fuel are known, the kinetic 
energy of the system can be obtained from the translational 
and rotational velocities of the airplane and the fuels. With 
this information the interactions in the system can be obtained 

by using Lagrange’s equations of motion in the form (see 
reference 5) 

(i=1,2, . . . n) (1) 

where qr is one of the n generalized coordinates of the system 
corresponding to the n degrees of freedom, bt is the corre- 
sponding velocity, and Qi is the corresponding generalized 
force. The qr will be lengths and angles and the correspond- 
ing Qi: will be forces and moments, respectively. 

The airplane itself introduces the customary six degrees 
of freedom, which are the three displacements of the airplane 
system along axes fixed in the airplane (z, y, z) and the cor- 
responding angles of rotation of the airplane about these 
axes (6 4 $1. For small displacements, the pendulum 
motion can be described by two angles 5 and q since the 
vertical motion can be neglected (see fig. 1). The angle { is 
measured from a vertical line through the tank center to the 
projection of the line joining the tank center to the fuel 
center of gravity on the vertical plane parallel to the Y-axis 
and 9 is the corresponding angle in the vertical plane parallel 
to the X-axis. For small angles, < and 7 may be represented 

OS 

T/T center 

-b-i2 Otl id 
.- 

Tor 

c. g. 

FICWRE l.-Decomposition of horizontal fuel motion in terms of angles { and ? in vertical 
ph%lleS. 
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as in figure 1. In effect this figure makes use of the fact that 
small angles may be added vectorially. When the two addi- 
tional coordinates { and 7 are used to describe the pendulum 
motion, the whole system has two additional degrees of 
freedom for each fuel tank. 

Expressions must be obtained for Ek and ED in terms of 
the coordinates of the system and their time derivatives in 
order to use equation (1). The only potential energy is that 
of the fuel pendulums, which can be written as follows for k 
fuel tanks: 

E,=& m&,8 (2) 

For the height of the center of gravity in each fuel tank, a,s 
can be seen from figure 1, 

h=h{+h,=Z-Zcos { cos ll=Z I-- I-~ {L [ ( l j(l+)] 

or 

h=; Z(s”2+?lz) (3) 

Note that, the vertical displacement h is of second order in 
the small quant,itics 7 and {. This fact justifies the previous 
statement that the vertical displacement could be neglected 
in describing the pendulum motion only by the t.wo coor- 
dinates 7 and {. As might be expected, equations (2) and 
(3) indicate that each fuel pendulum is being considered as 
an undamped oscillator with two degrees of freedom in a 
horizontal plane. 

The kinetic energy of the total system can be written as 
the sum of the kinetic energy of the airplane and the kinetic 
cncrgics of the fuels. Also the lrintltic rncrgy of rach rigid 
body can be tsprcssrtl as the> sum of thr translational energy 
of thr mass moving with the velocity of its ccntrr of gravity 
and the rotat,ionnl kinetic rnergy of the mass about its centrl 
of gravity. Thus, when the inertial characteristics of the air- 
plane and the fuels arc known, the kinetic energy can bc 
obtained as a function of the gcncralized coordinates and 
velocities if the translational velocity of each center of gravity 
and the angular velocities of the airplane and fuels about 
their respective wntcrs of gravity can he expressed in terms 
of these genrralizcd coordinates and velocities. 

In order to obtain thr required csprcssions for thcsc vcloci- 
ties, a system of nscs fiscd in the airplane with the X-axis 
along the steady-state vrlocity at d=O is used, as is cnstomary 
in stability analysis. For the present the origin of the coor- 
dinates will not be specified. However, these stability axes 
are not inertial axes and Newton’s second law applies only in 
an inertial system. of axes. The inertial axes may be taken 
as axes fixed in the earth. Then in the equations of motion 
the velocities and accelerations must be measured with re- 
spect to the earth, and their expressions in terms of com- 
ponents in the moving airplane ases may be obtained as 

shown in reference 6. These expressions will give the kinetic- 
reaction forces, which for the case of a rotating system are 
often referred to as ‘(gyroscopic” forces. For the velocity, 
referred to the inertial system, of any point defined by the 
vector R in the airplane axes (in particular, for the centers 
of gravity previously discussed), 

V=i+wXR+l?=ilJ+v+wXR+& (4) 

where all vectors are given in terms of the airplane axes and 

is the velocity of the origin of the airplane system with respect 
to the earth, while v and w are the translational and rota- 
tional disturbance velocities of the airplane axes. 

Equation (4) may now be used to express the inertial 
vrloc,ities of t,he airplane center of gravity and the fuel 
centers of gravity in terms of the generalized coordinates by 
inserting for R the values R, and R,‘, where R, is the vector 
position of the airplane ccnt#er of gravity and R,’ indicates 
the vect,or position of any particular @el center of gravity. 
The vector R, is constant.; t,hereforc, R,=O. To obtain l?,‘, 
note t,liat, to first order 

Rf =R,-iii, sin (yo+O-q,)--jZr(<,--~ cos ro-+ sin ya)+ 

kl, ~0s (ho+ e- 7,) 

R I’ =R,- i&in yo+ CO--- ?~f) cos 701 -.MTf-4. ~0s YO- 

ti sin YO) + Wcos YO- CO-- 75) sin rd 
where RI is the fixed position of the tank center. Since y. is 
const,ant, to first. order 

i2’ / -iCf(?if-4) cm yo-j/Jj-/-icos ~“-6 sin yo)+ 
kZ,(lj,- e) sin y. 

Again keeping only first-order terms leacls t’o the following 
equation: 

WXR, =~XR,+iZ,~cos yo-jZ,(Gcos yo+$ sin -yo)+kZrti sin y. 

Now combining the last two equations gives 

wXR,‘+&,r-uXR,+ilj,lf cos -yo-jZ,~,+kZfljf sin y. (5) 

This cquntion shows, as could be p&i&cd physically since 
no viscous force is assumed between the tank and the fuel, 
t,hat the airplane rot,ation affect.s only the motion of the tZank 
center. 

From equations (4) and (5) t.hc necessary translational 
velocities can be obtained for the translational kinetic ener- 
gies. The rotational velocity of the airplane is simply w. 
The spinning motion of the fuel about the vertical axis is 
ignored; then, the rotational velocit,y of the fuel may be 
given by t,he components i and i. The two corresponding 
horizont,al axes of rot,ation through the fuel center of gravit,y 
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are principal axes of the spherical segment of fuel ; conse- 
quently, no product-of-inertia terms occur in the fuel rota- 
tional energy. Also, since the airplane center of gravity is 
in the airplane symmetry plane, Iyz=Ixy=O and only the 
Ixz product of inertia will appear in the airplane rotational 
energy. 

By use of equation (4), the airplane velocity can be shown 
to be 

The effect of this acceleration can be brought into the equa- 
tions of motion by considering the inertial reaction of the 

When equation (5) is substituted into equation (4), the 
total ma.ss to this acceleration as an additional applied force. 

velocity of any particular fuel center of gravity is If the total mass is m,=m,+,&m,, this reaction has the 

V,=i(U+u+BR,,--R,,+i,Z, cos ro)+j(v+$Rzf-in,,- 
following components: 

~,Z,)+k(w+iR,,-efz,,+1;,1, sin ro) (6b) 
Y’= -m,U;C, 

(9) 
Z’=m,UB 

If V is the magnitude of the translational velocity of the 
I 

center of gravity of a  rigid body, I’ is its moment-of-inertia In nddit.ion there is the incrtinl rcnction torque M,’ on the 
tensor about t.he ascs through it.s center of gravity, and w furl; this torqur a.cts about the tank center and is caused 1)) 
is the rotational velocity of the rigid body, tlic Iiinctic thr arcclcration of the tank center. For rach tank, thr 
energy is vector rcnction torqur is 

M,‘=(R,‘-R,)Xm,lJ(-j$+kB) 

2I,,‘w*w,--2I,.‘w,w,) (7) 

Thus, for the kinetic energy of thr airplane, substitution of 
equat.ion (6n) into equation (7) gives 

(w+~f~~“-8R~~)z]+~~1~2+~~~~+‘~‘~z-f\-,fi~ ill*’ = m,Z,l’1) (cos2yo+ sin?yo) = m,l,l!& (10a) 

(8n) AI,‘= m,Z,Ui sin y. (lob) 

and, for t.hr kinetic energy of each fuel, substitution of The forces and moments in equations (9) and (10) must 
equation (6b) into equation (7) gives bc added to the weight and aerodynamic forces to obtain 

the Qi in equation (1). 

(8b) 

For the total kinetic energy, E,=Efia+& Et,; therefore, 
f=l 

equations (2), (3), and (8) may be used in equation (I) to 
obtain the (2kf6) equations of motion. However, it must 
again be recalled that the coordinate system is rotating. 
The whole system is therefore subject to an additional 
gyroscopic acceleration since the time-derivative operator 
conta,ins an additional gyroscopic term (see reference 6) 

when the components of the velocity (or any vector) are 
taken in the rotating system: 

;;=r+,xi 

Thus the gyroscopic acceleration acting on the whole rotating 
system is 

=m,lJ [(-iZ, sin y0 + kl, cos yo) X (-j$ + kb) + 

Second-order terms] 

= m,Z,U(i$ cos -yo+j4 sin ro+k$ sin ro) 

Since Mr’=(M,‘), cos r,+(M,‘), sin y. and Mq’=(M,‘),,, 

For convenience, the results of equations (2), (3), and (8) 
are as follows: 

Ep=$ ~&Mi-,p+ll,z) (114 
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Equations (9), (lo), and (11) may now be used in equa- 
tion (1) to obtain the equations of motion. It should be 

noted that A= a a a 
bS a(U+u) 

=-, ,=A, and &=& 
au ay av 

For ex- 

ample, to obtain the equation of motion in the z-direction, 
note that 

bE?x aE,-O -= -- az as 
Then, equation (1) may be written as follows: 

=m,ti+i 
( 

m,Rza-j-&m,R2, -$ 
> ( mJ&, f 

&mf&,)+J~iirmrlr ~0s ro=X 0% 

The position of the origin of airplane coordinates has not 
yet been specified. Equation (12) and the similar equations 
obtained in the other degrees of freedom suggest that the 
position of the origin bc determined by the following three 
conditions: 

md&+ & m&,= 0 (134 

m,R,a+J& m&,=0 WW 

Maria+ & ML,= 0 (13c) 

Equations (13) imply that the origin is at the position of the 
total center of gravity when the fuel mass is treated as being 
concentrated at the tank center. This choice of the origin 
greatly simplifies expressions such as equation (12). The 
physical reason for this choice is again that the fuel does not 
rotate with the airplane; thus, a force acting on a line through 
this point, the center of gravity where the fuel reaction is 
assumed concentrated at the tank center, will produce no 
rotation of the airplane. 

The following substitutions will also greatly simplify the 
writing of the final equations of motion: 

~~~~~~+m,[(R~~)z+(R~~)2]+~m~[(R,,)2+(Rz,)2] 

Iy=~yt+ma[(Rza)2+ (R,J’]+& m,[(Rz,)2+(Rz,)2] 

i 

(144 

Iz=Iz’+ m,[(R=~)2+(R~~)2]+~m,[(R,)Z+(Ryl)Z] 

Ixz= Ixz’+m,Rz~Rz~+& wRzfRzf 

Note that the quantities defined by equations (14a) are the 
total moments and product of inertia about the origin of the 

airplane coordinates when the fuel mass is assumed to be 
concentrated at the tank center. Finally, the necessary 
moments of inertia of each fuel pendulum about the tank 
center are 

04W 

Without loss of generality then, equations (13) and (14) 
are used in the equations of motion obtained by substituting 
equations (9)) (lo), and (11) into equation (1). The general 
equations of motion can now be given as follows: 

m,li+& m&j, cos yo=X 
J=l 

m,(ti- Ub)+& m,Z,ijf sin ro=Z 
/=l . . k 

> 

. . 

IY 0 - mJL&, -I- Fl m&,R,, d, - 

( 
maR&, + gl m,R,,I1,,) 8-l 

5 (RZ, cos y,,- Rz, sin ~o)m,l,ij,= M 
J=l 

I,,ijl+mlll [gtl,+ti cos ro+(ti-UUe) shyof 

R,,$ sin yo+~(Rz,cosyo-RR,, sinr,J- 

R,,&cos r,,]=O 

m,(l:+U$)-$l m,Z,fr=Y 

I,j-I,,6;-(m,R,R*~+~~ m,R,&,)B-- 

gl &(Rz,~,+R~,ii, cos -J =N 

Ix& Ixo~-(maRaR,,+$l m,Rz,&,) ii+ 

gl &(Rz,~,+Rv,+i,sin Y~)=L 

Ir,il+m,l,(gp,---U~+R,,I;I-RRZ,~)=O 

(154 

(15b) 

In equations (15a) and (15b) only the fuel equations for the 
first fuel tank have been written. In each set there are k 
similar fuel equations. As has been previously stated, the 
forces on the right-hand sides of these equations are the 
applied forces and the weight and aerodynamic forces. 
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SIMPLIFYING ASSUMPTIONS 

The equations of motion have been separated into what 
would generally be considered the longitudinal motions, 
equations (15a), and the lateral motions, equations (15b). 
In the ordinary six-degree-of-freedom case, as can be shown 
from considerations of symmetry, no cross-coupling terms 
exist between these motions in the aerodynamic forces (see 
reference 7)-c,---Although such terms are known to exist in 
practice, they are small and generally neglected. However, 
many cross-coupling terms occur between equations (15a) 
and equations (15b) because of the fuel motions, even when 
the aerodynamic coupling forces are ignored. The magni- 
tudes of these fuel forces can be seen to depend on the masses 
of the fuels, the vector positions of the fuel tanks, the “pendu- 
lum length” (i. e., the radius of the tank and the height of 
the fuel), and the accelerations involved in the fuel motion. 
Increasing the magnitude of any of these parameters will 
increase the effect of fuel motion. For most airplanes these 
fuel forces will be relatively small, but the present investiga- 
tion is primarily concerned with all first-order fuel effects. 
In any particular case, the actual magnitudes of these forces 
may of course be obtained by inserting the values of the 
previously mentioned parameters. 

Symmetrical fuel distribution-Some of the terms in 
equations (15a)-for example, the C$ and 4 terms in the 0 
equation-are essentially product-of-inertia terms arising 
from unsymmetrical distribution of the fuel about the 7~=0 
plane (i. e., the plane of symmetry). That this is so can be 
seen if the fuel tanks are assumed to be distributed symmetri- 
cally with respect to the symmetry plane; that is 

& m,R,,R,,=& mlR,,R,,==~ mfR,,=O (16a9 
J=l J=l J=l 

and from equations (13) 

R,-=0 (16b9 

Therefore, these terms vanish for symmetrical fuel distribu- 
tions. In most cases the fuel will be symmetrically distrib- 
uted, and substitution of equations (16) into equations (15) 
yields the equations of motion for symmetrical fuel distri- 
bution: 

k 
m,i+x m,lf+ cos yo=X 

J=l 

k 
m,(ti- Ud)+C m&j, sin ro=Z 

J=l 

I,ii+$ (R,, cos yo-Rx, sin yo)mfZ&=M 

I,,il+mlll[gvl+ti cos ro+(G- Ue> sin YO+ 

R,,$ sin yO+ i(R,, cosyo--R,, sin yO)- 
R,,1;1cosyo]=O 

219313-53-2 

. 

.i 

(17a9 

7 

(17b9 

In equations (17) even though the terms arising from unsym- 
metrical fuel distribution have vanished, some cross-coupling 
terms still remain between equations (17a) and (17b). These 
terms occur in the 7 equations of set (17a) and in the 4 and # 
equations of set (17b). The significance of these terms is 
evident since each contains a factor R,,. Thus, these terms 
arise when the airplane has fuel tanks with centers not in 
the plane of symmetry, even though they are symmetrically 
distributed with respect to this plane. For example, they 
would arise for wing-t,ip tanks. Physically, these terms 
clearly give the interaction between the longitudinal fuel 
motion q1 in the wing-tip tanks and the airplane rotation 
about the vertical axis, which consists of the lateral motions 
+ and #. For example, assume for simplicity that yO=O; 
then, a yawing acceleration of the airplane will cause a lon- 
gitudinal fuel acceleration ;j, in the wing-tip tanks, and vice 
versa. 

From this discussion the 7 motion appears to couple the 
lateral and longitudinal airplane motions even for the per- 
fectly symmetrical fuel distribution described by equation 
(Isa). However, the fact that this coupling does not occur 
can be seen by considering any pair of symmetrically placed 
and loaded tanks. Designate the q motion in this pair of 
tanks by TJ~ and v2. Then, the 71 equations in equations (17a) 
show that a longitudinal horizontal acceleration of the tank 
gives rise as expected to 17 accelerations. Since the system 
is linear, this portion of the 7 motion may be considered 
independently, and because of the symmetry of the two 
tanks it is seen that +il=ij2 for the portion of the 7 motion 
arising from the longitudinal motion. Therefore, in the $J 
and + equations of set (17b) the effects of this ;i will vanish 
since R,,= -R,. In a similar manner the laterally caused 
7 motion can be shown to have no effect on the longitudinal 
motion. Essentially the argument is that the TJ motion for 
each pair of tanks can be split up for perfectly symmetrical 
fuel distribution into symmetrical and antisymmetrical 
motions. The symmetrical portion of the 17 motion for each 
pair of tanks couples only with the longitudinal motion; the 
antisymmetrical 7 motion couples only with the lateral 
motion. Thus, for perfectly symmetrical fuel distributions 
the 7 equations of set (17a) could be combined with set (17b), 
only lateral degrees of freedom in the 7 equations being used 
(since the symmetrical portion of the 7 motion is of no 
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interest); or the 7 equations may be used as shown with 
equations (17a), the lateral degrees of freedom in the 71 

equations being ignored. 
Fuel tanks centered in symmetry plane.-Many airplanes 

have large internal fuel tanks which are centered in the 
airplane symmetry plane. For such airplanes the equations 
of motion may always be separated into independent lateral 
and longitudinal modes since R,=Q. Using this value in 
equations (17) gives the equations of motion for tanks 
centered in the symmetry plane: 

k 
m,tifx m& cos yo=X 

I=1 

m,(ti- lJB)+& m&j, sin yo=Z 

Iy~+& (R,, cos y,,--- Rx, sin y,Jm,ljj,= M 
f=l 

I,,;jl+mlll[g771+~ cos yo+(k- LTh sin YO+ 

(R,, cos yo-R,, sin yJ8]=0 

. 

* (184 

J 

I (18b) 

. 

Each set of equations, (18a) and (18b), contains (Fc+3) 
variables; the two sets can be seen to be independent of each 
other since the { motion of each tank couples with only the 
lateral motion and the 7 motion couples with only the longi- 
tudinal motion. 

For the case of a single fuel tank at the airplane center of 
gravity the modification of equations (18) is obvious. Then 
R,=R,=O, and all coupling between the rotational motion 
and the fuel motion vanishes; that is, all the fuel terms in the 
rotational equations vanish and all rotational terms in the 
fuel equations vanish. For an aspherical tank the rotational 
coupling in this case will be small. 

LIMITATIONS INHERENT IN THE APPROXIMATIONS 

Before proceeding to the application of equati0n.s (18b) 
it is appropriate to consider somewhat more explicitly the 

assumptions involved in the indiscriminate dropping of all 
second-order terms which appeared during the derivation 
of the equations of motion. In this connection the correc- 
tion, arising from the airplane accelerations, to the constant 
acceleration field g involved in the pendulum potential en- 
ergy should be considered. The assumption which is implied 
in neglecting these accelerations is that the accelerations of 
the tank centers are small with respect to g. 

If this and previous approximations are considered, it 
can be seen that three essential assumptions were made in 
dropping second-order terms: 

(1) The fuel and airplane angular displacement variables 
are small enough so that the angle approximates its sine. 
However, this approximation sometimes took the form that 
the angle was much less than 1 radian. 

(2) The disturbance velocities are much less than V, and 
products of the linear or angular velocities can be ignored. 

(3) Th.e accelerations of t,he tank centers must be small 
compared with g. 

Strictly speaking then, the statement that the equations 
of motion (15), and also the simplified equations, are ac- 
curate equations of motion to first order is to be taken to 
mean that the motions to which these equations apply are 
restricted by the preceding three conditions. Thus, the 
equations would appear to remain accurate at least at the 
beginning of a disturbance. Moreover, when the motion 
becomes large enough that these assumptions break down, 
the fundamental physical assumption that the fuel may be 
considered to move as a rigid body also breaks down; there- 
fore, nothing can essentially be gained by keeping higher- 
order terms in the mathematical expressions. 

Since the pendulum motion is little changed even up to 
angles of 30’ to 40°, it could be expected that aside from 
splashing effects these equations should remain a good to 
fair approximation even at such angles. On the other hand, 
even the splashing effects, although they would introduce 
some damping and change the inertial characteristics of the 
pendulum somewhat, could certainly not be expected to 
cause the general assum.ptions to break down completely 
for fuel motions up to angles of 30’ to 40’. Therefore, the 
equations of motion derived are assumed to present a fair 
picture of the disturbance motion even up to fuel displace- 
ments of this magnitude. 

APPLICATIONS TO SEVERAL CASES 
NONDIMENSIONAL EQUATIONS FOR TANKS IN SYMMETRY PLANE 

The equations of motion (18b) have been applied to the 
lateral motion in several cases with two fuel tanks in the 
plane of symmetry. In these cases the lateral motion can 
be considered independently. The applied forces are the 
weight, the usual aerodynamic forces linear in the disturb- 
ance velocities, and any disturbing forces that may be 
present. In order to put the equations in nondimensional 
form, the nondimensional lateral airplane equations are used 
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as obtained in reference 8. The fuel equations are made 
nondimensional by making t,he standard transformation to 
nondimensional time derivative, as in the airplane equations, 

and then by dividing through by 3iE. The resulting 

nondimensional expressions in the following equations are 
defined in equations (20): 

-DP- 2 D2+D l,=. (lgd) 

-DP-- F2) (2 ) 7 D +D G++ D%+ K2D2+G c2=o (lge) 

where 

(20) 

/ 

The derivatives CYP and CY, were assumed to be zero. 

METHODS OF SOLUTION 

In the present case the two fuel degrees of freedom intro- 
duce two additional oscillatory modes into the characteristic 
solution, in addition to modifying the original airplane mode. 
The motion will therefore be a combination of three oscilla- 
tions (aside from the less important exponential modes), but 
just knowing the three oscillatory roots is insufficient to indi- 
cate the type of motion since the relative magnitudes of the 
oscillatory modes must also be known. For this reason 
motions must be calculated in order to see the actual effects 
of the fuel motion. However, in several cases the charac- 
teristic roots were also found in order to facilitate the inter- 
pretation of the motions. These cases will be discussed 
subsequently. 

The most convenient method for the analytical solution 
of a set of linear ordinary differential equations such as 
equations (19) is probably the Laplace transform method 
(see reference 8). However this method is extremely cum- 
bersome and difficult to check since it involves the expansion 
of fifth-order determinants in which the elements are often 
quadratic functions of the characteristic root. Therefore, it 

seemed preferable to. use. some step-by-step method which 
would be more amenable to machine computation. 

Reference 9 gives a matrix method for getting the step-by- 
step solution of a set of linear ordinary differential equations. 
When applied in the present case to equations (19) this 
method results in a simultaneous solution for the motion in 
each of the five degrees of freedom and also for the motion 
in D& D#, Df,, and Drz. The calculations were carried out 
on the Bell Telephone Laboratories X-66744 relay computer 
in use at the Langley Laboratory. The essential details of 
the method are given in appendix A. 

SOLUTIONS FOR SEVERAL CASES 

The two basic cases for which motions were calculated 
were case A, a present-day high-speed airplane with two fuel 
t,anks satisfying the conditions for equations (19), and case 
B, which corresponds essentially to case B of the model used 
in reference 2. The essential parameters for these two cases 
are given in tables I and II. Table II gives the conditions 
for case A when both tanks are one-half full (Al) and when 
the fuel height equals one-half the radius (AZ) and for case 
B when the fuel heights in both tanks are 2 inches (Bz), 3 
inches (Bs), and 4 inches (B4). 

In case A the tanks are spherical, somewhat over 4 feet in 
diameter, and centered on the body axis approximately 4 
feet in front of and behind the airplane center of gravity. 
The flight conditions are given in table I. The fuel weight 
in the half-full condition is approximately 25 percent of the 
total weight. 

In case B the tanks are spherical, centered in the plane of 
symmetry slightly less than 5 inches below the airplane axis 

TABLE I 
STABILITY DERIVATIVES AND MASS AND GEOMETRICAL 

CHARACTERISTICS FOR TWO CASES CONSIDERED 

Perameters case A Case B 

CYP . . . . . ..-......_..._._..-.--.-. . . ..____._._._____ -1.042 
C”,...............................-.....--.-..--..-- 0. 17 
q.. . . . _. . . _. . _ _. . _. . _. _ _ _ _ _ _ -0.126 
C”,..............................-.......-..---.---- -0.01552 
a,.. ._......................_..._....__._. _._.._._ -0.342 
C” ,------.-.-........... . .._..._._....____._._._____ -0.25 
Cl,... __..__._._..._ __....._._..._........._._.___._ 0.0796 
Weight of airplane alone, lb .._._._._______ _________ 
.s,sqrt __.______ -.__-_- . . . .._._.....___._......._.__ 

6,970 
130 

6, ft .._._._._._......_._.......__....._.__......_._.. 28 
yo, deg.. ._. _. _.......__..............~.~.....~.....~ 0 
p,slllgs/cuft .._._..__._.__ ___._._._..._____._ _.____ 0.00136 
u,rt/sec .-...._.___._._.__._--.- -_-_- _..._._._____ -.. 704 

-- 

- 

-0.80 
* 0.17 
-0.14 

b-O.040 
-0.30 
-0.16 

0.30 

‘Z? 
4.0 

-11 
0.002378 

61.5 to 74.25 

*In case B<s, C.,=O.29. 
b Actually, slightly different values of CL, were used for each of the subcases of case B. 
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and 4 inches in front of and behind the model center of 
gravity. The diameters are 8 inches and the total fuel 
weight in the half-full condition is approximately 46 percent 
of the total weight. The flight conditions are the same as 
in reference 2. 

Motions were calculated for certain subcases of the basic 
cases which were obtained by varying certain significant 
parameters. By comparing the resulting motions an attempt 
was made to evaluate the effect of varying such factors as 
amount of fuel, position of tanks, and relative natural fuel 
and airplane frequencies on the disturba.nce of the airplane 
motioo caused by fuel motion. Also various initial condi- 
tions were considered to show the effect of initial conditions 

TABLE II 

FUEL DEPENDENT PARAMETERS 
- 

Parameters Al 

Radius of forward 
tank, ft ..____ . . . . . 

Radius of rear tank, ft. 
Fuel height in for- 

ward tank, ft . . . . 
Fuel height in rear 

tank, ft.. . . . . . . . . . 
Rz,,ft.~..m . . . . . . . . . 
R,,,ft . . . . . . . . . . 
I?.,, ft . .._......._. -.__ 
R,, It . . .._..._.__.._. 
Weight of forward 

fuel,Ih . . ..____. . .._ 
Weight of rear fuel, lb. 
Total weight of air- 

plane and fuel, lb.. 
CL..-.- _____..... -. 
I*, slug-ftr . ..____._ 
I& slug-ft2 .___.__...... 
In, slug-it*. -_-....___ 
I,, ft ..____ -___- _..... -. 
12, ft.... ._.._......_._. 
I,, slug-ft2. _. ___.._. _ 
12, slug-fU _.___._..-___ 

2. 15 
2. 12 

2. 15 

2. 12 
3. 5 

-4. 1 
0.0123 

-0.0144 

1.480 
1, 068 

9,518 
0. 19 

1,360 
7,340 

262 
0.806 
0.795 

85. 2 
59. 7 

.8 
n 

A2 

2.15 
2. 12 

0.333 
0.333 

0.333 
0.333 

1.075 0. 1667 0. 260 

1.06 0. 166i 0. 250 
3. 5 0.333 0. 333 

-4. I 4.333 -0. 333 
0.0123 0. 4Oi 0.407 

-0.0144 0.407 0.407 

462 1.51 3.07 
334 1. 51 3.07 

‘ix72 
1,360 
7.708 

277 
1.45 
1.43 
40.0 
28. I 

14.27 
1.062 

0.1081 
0.2098 

0.22: 
0.225 

0.00315 
0.00315 

:.‘;;i 
0.1243 
0.2206 

0.17: 
0. I74 

0. oxlO 
0. WY37 

Bt B3 

- 

R4 

0.333 
0.333 

0.333 

0.333 
0.333 

-0.333 
0.407 1 
0.407 

4.85 
4.85 

20.95 
1.174 

0.1428 
0.233 

0.12: 
0. I25 

0.00668 
0.00668 ) 

on the resulting motion. In some cases an initial. disturbance 
in sideslip was assumed, and in other cakes an initial fuel 
disturbance was assumed. An initial sideslip of 5’ and a 
fuel displacement of 10' were arbitrarily chosen as standard. 
Since the equations are linear, multiplying the initial dis- 
placements by a common factor simply multiplies the result- 
ing motions by the same factor. In this connection it must 
be emphasized that, if at any time the calculated motion in 
any degree of freedom becomes too large to satisfy the 
limitations previously discussed, the following motion is 
meaningless. For example,’ if a 5’ displacement in p gives 
rise to a fuel motion much greater than 30’ to 40°, the accom- 
panying p motion is meaningless because the assumption of 
small displacements is violated. However, if multiplying the 
fuel motion by some arbitrary factor, for example 2/5, will 
bring its peaks down to less than 30” to 40°, then the p motion 
resulting from an initial p disturbance of 2’ can be obtained 
by simply multiplying the previous @  motion by 2/5 also. 
The effect of large fuel displacements must be discussed 
qualitatively. 

The motion in sideslip and the motion of the two fuel 
pendulums in the various subcases are shown in figures 2 to 
12. Comments on these motions are presented t#o facilitate 
interpretat,ion of the figures. The period of each fuel pendu- 
lum is called the natural fuel period. The period and damp- 
ing of the airplane, t#he fuel being disrega.rded, are called the 
natural airplane period and damping. 

Case A,.-The natural fuel periods for case A, (half-full 
tank) are approximately 1.66 seconds and the natural period 
of the airplane alone is 1.40 seconds. Damping to half- 
amplitude occurs in 2 cycles. 

The motion in figure 2 is for initial po=2”. The early p 
motion seems to have more clamping than the natural airplane 

.8 I.6 2.4 3.2 4.0 4.8 5.6 6.4 ZP 8.0 8.8 96 lo.4 Il.2 I2 0 12.8 13.6 14.4 
t, set 

FIIX~RE 2.-Present-diry high-speed airplane with tanks one-half full (case AI). Sidmlip and fuel motions iollowing initial sideslip, ,%=2”. 
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mode. The disturbance arising from the fuel modes is evi- 
dent after 2 cycles. That the irregular residual oscillation 
of amplitude %” to )$” is essentially due to the fuel modes 
is seen from the fact that the dominant period in the later 
motion is approxi.mately 1.6 seconds. Notice that in this 
case a 5’ initial pli would almost immediately cause fuel dis- 
placements of over 80”, so that the following motion would 
be radically-changed. 

The motions shown in figure 3 for ({Jo= (~2)0~100 are 
quite regular and indicate one dominant mode in each motion. 
The fuel period is 1.6 seconds. The airplane period st.arts 
at 1.4 seconds, builds up to 1.7 seconds, and averages 1.6 
seconds. The amplitude of the sideslip motion is very small. 
The largest such motion which could occur for this type of 

disturbance would be for initial ({1)0=({2)0=300 and would 
give p amplitude slightly more than 0.1’. 

The small amplitude of the sideslip motion in figure 3 was 
surprising. It was conjectured that for this fuel configura- 
tion the fuel displacement ({JO=lOo and ([2)0=-100, 
corresponding essentially to an initial yawing moment, might 
be more effective in inducing an airplane oscillation. (See 
fig. 4.) Apparently, this configuration is more effective 
inasmuch as .the sideslip motion no% builds up to an ampli- 
tude of approximately 0.4’. The energy necessary to induce 
this considerable “snaking” type of oscillation seems to be 
obtained initially from the rear-tank motion, which is in the 
proper phase relation with the sideslip motion to feed energy 
into it at the start of the motion. 

FIOPRE 3.-Present-day high-speed airplane with tanks one-half full (case -41). Sideslip and fuel motions following initial fuel disturbance, ~$a=fJn)o=lO”. 
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The fuel periods in the regular motion are slightly over 
1.6 seconds. The airplane period increases from 1.5 to 1.8 
seconds and has an average period of 1.6 seconds. 

Case A,.---The natural fuel periods in case Az are approxi- 
mately 1.52 seconds and the natural airplane period is 1.49 
seconds. Damping to half-amplitude occurs in 1.3 cycles. 

The motion in figure 5 is for initial p0=0.5’. The early 
sideslip motion seems to be of greater damping than the 
natural airplane mode. The residual airplane motion arising 
from the fuel modes sets in very quickly and is a regular 
unstable motion of very large relative amplitude with a 

period of approximately 1.7 seconds. Both fuels start with 
a period of approximately 1.5 seconds, which increases to 
1.7 seconds. 

In figure 6, @Jo=-10’ and (3;)0=100. The sideslip 
builds up to a fairly regular oscillation of 0.4’ amplitude 
with the period increasing from 1.5 seconds to 1.7 seconds. 
The fuel motion has a period somewhat under 1.7 seconds 
with amplitude quickly building up to the limits where 
splashing must become important. 

Case B,.-The sideslip motion shown for case BP appears 
to be a normal damped oscillation for the first 4 seconds 
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FIGURE 4.-Present-day high-speed airplane with tanks one-half full (case AI). Sideslip and fuel motions following initial fuel disturbance, (C~)o=lo”, (i3)0= -10’. 
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(fig. 7, &,=5’), but then the peaks show a slight irregularity 
instead of damping smoothly. The period of the early side- 
slip motion appears to be somewhat over 0.9 second and the 
motion damps to half-amplitude in less than 2 cycles. This 
motion is very close to the undisturbed airplane model 
(period of 0.92 set and damping constant of l$i cycles). 
The natural fuel periods are 0.61 second. The fuel motion 
is very irregular and obviously contains considerable amounts 
of at least two characteristic modes. 

one is below the X-axis. Therefore in case B,,, shown in 
figure 11, the front fuel tank was assumed to be above the 
X-axis, all other conditions remaining as in case B,. In this 
case the general type of motion does seem to resemble that 
in figure 3. The sideslip, which builds up to &%“, shows 
a snaking at the fuel frequency. 

Cases B3 and B,.-The motion in cases B3 and B, shown in 
figures 8 and 9, respectively, for po=5’ is very much the 
same as in the previous one, except that the disturbance of 
the airplane mode in the sideslip motion appears somewhat 
more pronounced as the amount of fuel increases. 

In case A the fuel natural periods are very close to the 
airplane period. In case B, however, the fuel period is ap- 
proximately two-thirds of the airplane period. In case BiB, 
shown in figure 12 for po=50, the value of CnB of the model 
has been arbitrarily changed to give the model a period very 
close to the fuel period of 0.66 second. Comparison with 
figures 2 and 5 shows that the motion in this case is very 
much like the motion in case A. 

Figure 10 (case B4, ({Jo= &Jo= lo? shows that tbe motion Transverse accelerations--In evaluating pilots’ reactions 
in sideslip resulting from the fuel displacement is much more to snaking oscillations, the magnitude of the transverse 
irregular than in case A. The dominant mode corresponds accelerations involved in the oscillations has been found to 
to a fuel frequency, but apparently the airplane mode is be an important factor. Acceleration amplitudes above 
present with considerable amplitude. The maximum oscilla- 0.0259 are found to be bothersome, and amplitudes above 
tions are approximately &)i”. The sideslip motion in this 0.089 are considered very unsatisfactory. Calculations of 
case was much more irregular than for the corresponding the transverse accelerations involved in several of the previ- 
initial conditions in case A. It was conjectured that this ous motions were carried out. The magnitudes of the accel- 
might be caused by the fact that in this model both tanks eration peaks in the residual oscillations were found to be 
are below the X-axis, so that the coupling of the fuel motion approximately 0.049 to 0.05g. The actual motions are not 
with yawing and rolling motions does not have the same shown since all the airplane oscillations are essentially of the 
phase relationship as in case A where one tank is above and same type as the fi motions. 
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FIGDRE 5.-Present-day high-speed airplane with fuel heights one-half the tank radius (case As). Sideslip and fuel motions following initial sideslip, ,90=0.5~. 



14 

I 

: 

I 

\ 
\ 

I \ 
16 - \ 

\ 

/2- 

I I 
I I 
I 
I I 
I 
I 
I 

I 

I 
I 

I 
I i 

I 

i 
I 

i I 
\ 
1 : 
iv/ 

\ 
\ 

‘J 

I I 1 
I 0 I I I I , I I I I I I 

6.0 0 .4 .8 /.e /.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 
t, *ec 

F~GTJRE fi.-present-day high-speed airplane with fuel heights one-half the tank radius (Case AZ). Sidos1.p and fuel motions following initial fuel disturbance, (<~)a=-lO~, fi~)0=10~. 
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FIGURE 7.-Free-flying airplane model with fuel heights one-half the tank radius (case B2). Sideslip and fuel motions following initial sideslip, @0=5”. 

DISCUSSION OF RESULTS 

The motions described in the preceding section are suffi- 
cient to give a fair picture of the types of possible fuel effects. 
Moreover, since each motion is just a superposition of the 
characteristic modes of the total system, these motions are 
often easier to understand if the characteristic roots are 
known. Physically it is clear that the characteristic modes 
will not differ much from the natural (uncoupled) modes 
when the interaction between the airplane and fuel is small. 
Comparison of figures 2, 5, and 12 with figures 7, 8, and 9 
indicates that the interaction between airplane and fuel is 
strongest when the frequency of the airplane is close to that 
of the fuel, as might be expected from comparison with the 
resonance phenomena exhibited by an oscillator driving a 
system at its natural frequency. For t(his reason the charac- 
teristic modes of the total system were calculated in cases 
A, and Bdb, where the frequency ratio between airplane and 
fuel natural frequencies was practically unity. The natural 
modes are given for purpose of comparison. The results 

are given as follows in terms of periods and times to halve 
or double amplitudes, in seconds: 
Case AZ, natural modes: 

Pa= 1.49 Tx=1.91 

P1=Pz=1.52 

Case A,, total system: 

P,=1.47 Ts=61 

P1=1.29 T,=1.34 

P,=1.67 T,=4.56 

Case Bkb, natural modes: 

P,=O.66 T,<=1.29 

P,=P,=O.66 
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.4 .8 /.2 16 20 24 2.8 3.2 3.6 40 4.4 4.8 5.2 5.6 6.0 
t, set 

Case Bib, total system: 

P,=O.G5 TX=30 

P1=0.54 Tt=1.5 

Pg=O.71 T!,=O.48 

In these casrs of large interaction it is difficult to identif! 
one of the characteristic modes as the airplane mode. The 
characteristic mode in which the period is rhangcd least 
from the natural airplane period has been called the airplane 
characteristic mode. However, in figures 5 and 12 this 
mode is not obviously the dominant one, as the airplane 
mode is in figures 7, 8, ancl 9. 

The most important effects to be noted in these particular 
cases, where the fuel and airplane frequencies are equal, arc 
that a characteristic mode which is very lightly damped with 

a frequency close to the natural airplane frequrncy exists 
and that an unstable mode appears. In connect.ion with the 
first of thcsc tffccts, it would seem that,, t.heoretically, 
certain initial conditions might be found that would excite 
mainly this lightly damped mode in the characteristic solu- 
tion for p, so that the resulting motion would bc a t,ypical 
snaking. Of course the rcquirrd initial conditions might OI 
might not bc practical ones. 

Tile total characteristic modes were also calculated for 
cases B, and Bda to investigate the changes in mot,ion caused 
by a hypothetical shift of one of the fuel tanks. The natural 
modes and the characteristic modes of the total system are 
given as follows for comparison: 
Cases B, and Bba, natural modes: 

P,=O.84 

P1=Pz=O.66 

Tbs=1.64 
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- -- - - {,, fronf fank 
S2, r-ear tank 

.‘cw IZJ, total s@?n1: 

P,=O.88 

P,=O.63 

P,=O.53 

e’lIsc~ I& total system: 

P,=O.86 

P,=O.Gl 

P2=0.f50 

Tt,=1.91 

T,,=5.45 

T,i=l.G~ 

T,,= 1.14 

rnl= 19.5 

7:,= 10.2 

It is intcrcsting to iiotc that hotli furls in fiprc IO nnrl 
also in figorc 11 swni to follow tlic mow stnhlc furl ~iiotlc in 
tlic part of the motion sliow~ ‘I’lic @  motion in fipurc 11 
seems to shou- tlir tffcct of tlir unstnblc niotlr. It nplmirs 
iii this rnsc that, whrn the furl tnnks arc in front of aid 
hrliintl the wntcr of grarit\-, tlic ronfigurntion with onr tdr 
abort ant1 one Mow the X-axis gives rise to iin onstiihlc 
mode; whcrcns the configuration with both tanks bclm- tllc 
dY-nsis mnl~cs both fuel ~notlcs stable. 

X comparison of figures 2 to 4 or fipurcs 5 antI li dmrl~- 
SllOws that tlic initial c~ontlitioiis can have a rcry importiint 
effccl, since tlic lrnst st:lldc mode does not nrwsszirily lxvomc 



18 REPORT IOSO--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

.4- 

2 - 
b 

so,, \ 
P 

-.P - 

----- $, front ionk 
- f,, rear tank 

.2 .4 .6 .8 IO I.2 /.4 i.6 LB PO 22 2.4 26 28 3.0 3.2 3.4 3.6 3.8 4.0 4.2 

FIGVRF. IO.--lQw-tlyiug nirplane model with tanks one-half full (cm? 01). Sideslip and fuel motions following initial fuel disturbance, (r,)~=(fi)~=lO’. 
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0 2 .4 6 .8 I.0 I.2 I.4 I.6 I.8 20 22 2.4 26 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 

f, set 

FrGonE Il.-Free-flying nirplme model with tnnks one-half full and front tank assumed to br shiltcd above thr S-axis (case Be). Sidrslip and fuel motions following initial fuel disturbance. 
(rl)~=(h’u=lo”. 

dominnnt for n long time. Tl~2 fi disturbance \r-ns chosen as had practically died out, the remaining motion might be 
a typical nilplant disturhnce. On the other. hand he tlis- consiclcrcd to be the tj-pe caused by- a furl displncement. 
t~wbnnce of the fuels as an init8ial contlit,ion Kould seem to From t,his point of view figures 4, 6, 10, and 11 seem to 
lx completely nrtificinl. However, thcsr motions arc bc- indicate tht residual oscillations of t#lw order of magnitude 
licvccl to give 23 rough idcn of t’he residual oscillations caused of ::” to jh” might be espect,ed in t8hese cases. Actuallp, 
1)~ fuel motion, al hst insofar as mngnit udc is concrrned, figures 10 and 11 woulcl show oscillations of the order of 
since, if the fuels were still displaced after the a.irplnnc motion :$” for 30’ fuel displncemenk. 
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I I I I I I I I I I I 

----- $,. frionf fonk 
&, fear funk 

2. I 24 
t, set 

FIGDRE I?.-Free-ftying nirplme model with tanks one-half 11111 and C,B adjusted to make nntuwl fuel nnd airplsnc irequencies equal (case Bib). Sideslip and fuel motions following 
initial sid .esli 

Because of the lengthiness of the cnlculntions, onl\- cases 
A,, A?, and B,, wxc carried out far enough to shop the 
residual oscillations following n B disturbance. It is cridcnt 
that the motion in ease Bdb (fig. 12) resembles the motion in 
case A (figs. f! nntl 5) much more than it rescmblcs the un- 
modified case B motion (figs. i to 9). The reason for the 
smaller relative fuel motion in cnsc B,, is probably the fact 
that the rclntive furl mass is considerably larger than in 
case A. In case An (fig. 5) the rcsiclunl oscillntion dominates 
the motion almost immediately-. Tl~ese results show that the 
importnnce of the resiclunl oscillation depends mainly on t’hc 
closeness of the natiunl airplnne and fuel freqncncics, that is, 
on the pnrnnieter which might be csllecl the frequency ratio. 
Innsmucli as tlic previous discussion of tlic chnrwcteristic 
liiodes indicntetl that the frequency ratio was also tlw most 
mport~nt factor dccting the clinrncteristic modes of the 
system, thr frequency ratio grnerall>- can be seen to be the 
nost import ant factor determining the disturbance of the 
~ornial airplnne motion caused b\- the fuel. ~loreover, case 
L indicates that for splierical tanks the fuel frequency may 

I$ &=5” I . 

easily be of the same order of magnitude ns the nirplnne 
frequency. Reference 4 indicates that the same is true for 
wct~nngular hnlis and for wbitrnrily slinprtl tnnlts of rcnson- 
able dimensions. Thus, even though the rcsidunl oscillntions 
might occur at. fuel frcqiicncies, these frequencies N-odd not. 
be distinguislinblc from the normnl nirplnne freqiicn~y in the 
cnws Where the fuel effect is most pronouncctl, sinrc in thrse 
cases the frequency ratio nppronchcs unity. 

The effects of unst.nblc modes cannot, be untlcrstootl with- 
out considering the nonlinear cffrcts due to splnsliing of t’lir 
fuel. For linear systems the presence of 8n unstnblc moflc 

would imp1.v that’ the total s-stem is unstable. It 1~s Iwcn 
shown, liowver, that, in an actual motion if the cocflirirnl 
of the unstable mock in the solution for the airplane motion 
is x-cl:\- small conipnrccl with the coefficient’ of one of the 
stable modes, then the unstnblc mode xi11 not nppenr in the 
early part’ of the motion. Now even in crises where the inttr- 
action is weak, one of tlic fuel modes (wit’li no nnhirnl tl~mp- 
ing assumccl) mwy be unsta.ble. In such cnscs the unst.nl~lc 
mode in the airplane motions will be relntivcly very small, 
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wsitlud osda Cons would riot8 appear. Since he amount, 
Of cncrg~- lost in tuhulcnrc rnnnot be cnlculntccl nnnlyticnlly, 
it ~011ltl seem that an csprrimental investigation of the 
cfl’tcts of liOnc~~~0m1~ Or 0t;her tu~hulcncc-inducingr bnfflcs 
On t~lic airplnnc~ stabi1it.v ~-odd be desirable, cspchd1-y in 
wsw dierc tllc nirplanc ant1 fuel natural frequencies are 
approximately cc~id. 

Finnl1.v it is possible in a strong1.v unstable cnsc of resicluill 
osdlations, such as shown in figure 5, that the fuel ma> 
lose just’ enough of its cncrg~- in splashing to reduce its 
amplitutle to n-here the mot’ion is again smooth. TlWIl, 
bccausc of tlic instability of die s?stern for small mot,:ons, 
the nmplitutle might again begin to build up. In this may 
c.ontinucd oscilliltions of n more or less regular nnt,ure woultl 
occur when the dculntions nrglc&ig splashing shorn un- 
stable motion. ‘l’his result is important because it shows 
I1ia.t somewhat irrcgulur smnll-amplitude oscillations can be 
rspcctctl when the ratio of the airplane nntural frequency 
to the fuel natural frequrnr>- approaches unity, even for 
moderate fuel masses of the order of one-tenth the total 
111nss 01’ less. 

EFFECTS OF ASPHERICAL TANKS 

The cdrulatioIis have been cnrrird out8 for rigitl-hotly 
motion in spherical tanks 0nl.v. Actually this assumrs that 
for small oscillations the funtlrrancntal wave motion in 
spl~crical tanks approximates rigid-boc1.v mot’ion. This 
approsimn Con only- applies when tmlw tnnlts are one-hnlf full 

or less. This restriction is not’ too serious, howevc~., since 

tbc fuel motion will gcllrdly have its grentest effect in this 
Ixno’c. 

If is important to note that the potrnlinl energy of the 
fuels is simply the potential cllergy Of & set of hrmonic 
oscillators located at t’hc posit’ions R,. Tl1us, the same 
~wieral niialvsis will nppl)- whencvrr t,llc fuel motion in tlw a 
tank can be rcprrscnt et1 in terms of harmonic oscillntors 
with given effective mass antI spring constant. Reference 4 
has :~lrcntl\- hen InentioIuxl as obtaining such rt rcprcscntn- 
tion for thct fIInda.lllCl~t~l IllOtle Of II WCt~IlgdIw tnnk. 
Ikunll~- the funtlamrntal mode will be the most important, 
:intl will involve the greater cflcctivr mass. It, is conceivable 
tllill fOl* 1Ollg tilIlltS the SP(‘OIl(I IllOde might be Of n frequency 
~~10s~~~ to 111a1 Of the :i.irplnnr ant1 in that’ casr might bc more 

impor(;l.n1. 111 such n ewe cwli mode might bc represcntccl 
1j.v a. separate oscillator. -1s has bcrn pointed out, tllc 
damping is maid)- clur to turbulence and will be mow im- 
portant, for nsplirrirnl tanks. For small motions, l~owcver, 
the damping 11lfly still bc nrglrcterl. 

From the general tlrrivntion of t~lic equations of motion, 
he most important result was the effect of fuel distribution 
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on the coupling of lateral and longitudinal motions. It is 
plain that these results apply strictly only to spherical tanks. 
Consider for example a tank of triangular plan form located 
in the symmetry plane and oriented symmetrically with 
respect to this plane. Because of the symmetrical orienta- 
tion it can be seen that, although sideslip motion will give 
rise to forward and rearward forces (because the pressure 

._ forces are-normal to the diagonal surfaces), the forward and 
rearward motion will give antisymmetrical lateral forces 
which will cancel. In this case the result would be to feed 
energy from the lateral into the longitudinal motion; this 
condition would be favorable since the longitudinal motion 
is generally well-clamped. For an unsymmetrically oriented 
tank of this type, energy could be fed back again from the 
longitudinal to the lateral motion and the problem would be 
quite complicated. 

In general, the results on coupling for spherical tanks 
would be valid to first order for such symmetrical plan forms 
as the rectangular or the diamond-shape oues. For any 
simple symmetrically oriented shape in the plane of sym- 
mctry, a loss of energy from the lateral to the longitudinal 
motion might OWLIV. This condition would bc favorable. 
Finally, for tanks outsitlc the plane of symmetry the same 
considerations would bc valid if the tanks wcrc symmetrically 
placed with respect to the symmetry plauc and symmetrically 
shaped with respect to the plum through the tank ccntci 
parallel to the symmetry plane. 

=Qggg7 
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CONCLUSIONS 

The following conclusions may be drawn from the the- 
oretical analysis presented: 

1. Considerable disturbances of the normal airplane motion 
can be caused by fuel motion. 

(a) The most important factor determining the effect 
is the ratio between fuel and airplane frequencies. When 
these are equal, even moderate amounts of fuel (one- 
tenth the total mass or less) may cause considerable 
disturbances. 

(b) The most usual type of clisturbed motion is a some- 
wl1o.t irregular small-amplitude oscillation and the type 
of motion is strongly dependent on the initial conditions. 

(c) The effects of splashing will be to make the motion 
more stable, and the loss of energy in fuel turbulence may 
make it possible to increase the stability by artificially 
introducing turbulence in the fuel. 

2. The fuel motion may cause coupling between lateral 
and longitudinal motions. 

3. The derivation of the equations of motion for spherical 
tanks may bc applictl to any tanks where the fuel motion 
may bc reprcscntctl in terms of harmonic oscillators. 

LAXGLET AERONAUTIC:\L LABOR.\TORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., NouembeT 21, 1950. 
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APPENDIX A 

A STEP-BY-STEP SOLUTION OF THE EQUATIONS OF MOTION IN MATRIX NOTATION 

A matrix method for solving the equations of motion is 
given in reference 9. The first step in this method is to 
reduce equations (19) to a set of first-order equations by 
introducing as new variables D#J, D#, DC,, and Dg2 as de- 
scribed in reference 9 for D+ and D#. This transforms the 
equations of motion into a set of nine linear first-order 
equations in the nine variables. In matrix notation the 
equations may then be written as follows when there are no 
applied forces CY, Cn, or CG 

A(Dq) +Bq=O (AlI 

where A and B are ninth-order square matrices and p is the 
column matrix (or vector), the elements (components) of 
which are the nine variables. In partitioned form, 

where I, is the identity matrix of fourth order; Oq5 and OS4 
are zero matrices of order (4x.5) and (5x4), respectively; 
and 

-p&/b -i.+/b 0 0 

- I*b2&Rz2/b2 - p&%,/b2 I *&& bbKz2 

I*a,l&,/b2 /.+Rz,/b2 Lb&c2 /d&z 

0 K12 % lb - Rz,lb 
K2 0 RZ2lb -J&/b I 

0 0 

0 0 

0 0 

o G 

G 0 

; CL -- -$ CLtany, -f Cr, 

0 0 -- ; G¶ 

0 0 -- ; Cl, 

0 0 0 

0 0 0 _ 

0 0 pb - 

0 0 -1 

0 0 -1 . 

Equation (Al) may be solved for Dp by multiplying 
through by the inverse of A: 

Dq= -A-‘Bq = Pq 642) 
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Equation (A2) shows that, when there are no applied forces, 
the differentiation operator with respect to nondimensional 
time may be replaced by premultiplication with the matrix 
P = -A-‘B. For example, note that 

D2q=D(Dq)=P(Dq)=P2q 

and that similar relations would result for higher powers. 
Now, by Taylor’s expansion, the value of q(s+As) may 

be obtained from the value of n(s) by the series 

n(s+As)=q(s)+$ Dq(s)+T D2q(s)+. . . 

By use of equation (A2), this equation can be written 

&+As)= I,+$ P+q P2+. . .] p(s) (A3) 

which is the fundam.enta.1 recurrence relation used in the 
step-by-step calculation. In equation (A3), I9 is the ninth- 
order identity matrix. The set of initial disturbances p. 
being given, the ma.gnitude of the step As will determine 
the number of powers necessary to obtain a given accuracy 
in the solution. Because of the relatively high fuel fre- 
quencies and because it was desired to obtain the mobion to a 
rather large number of periods with reasonable accuracy , 
the series in equation (A2) was used to the sixth power with 
As approximately l/20 of the airplane period. Thus, the 
matrix relation (A3) was 

where 
a(s+W= @J(S) (A4) 

Q-I,+% P+@$ PZ+ . . . +@$ p6 
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